貼片功率電感 繞線功率電感----中山市五環(huán)電子廠
五環(huán)編號(hào) | A | B | C | D | E | REEL |
CDRRI124 | 12±0.5 | 12±0.5 | 4.5 MAX | 5.0±0.2 | 7.6±0.2 | 500 PCS |
CDRRI125 | 12±0.5 | 12±0.5 | 6.0 MAX | 5.0±0.2 | 7.6±0.2 | 500 PCS |
CDRRI127 | 12±0.5 | 12±0.5 | 8.0 MAX | 5.0±0.2 | 7.6±0.2 | 350 PCS |
2. 五環(huán)編號(hào)表示 | | | | | | |
CDRRI 125 ?。?nbsp; 221 K |
(1) 2) (3) (4) |
| | | | | | | |
(1). 編號(hào)(Type) : CDRRI124/125/127/ ( CDRRI ) | | | |
(2). 尺寸(Size) : 成品外型尺寸(According to size) ( 125 ) | | |
(3). 標(biāo)稱電感值(Inductance) : "221"表示220uH(Example: "221"for 220uH) ( 221 ) |
(4). 電感公差(Tolerance) :"M:±20%, "K":±10% , "J":±5% ( K ) | | |
CDRRI貼片電感具有低直流電阻及高飽和電流,也可較易做到高感量,主要的應(yīng)用市場(chǎng)集中在中低功率的DC-DC回路上。
一般電子線路中的電感是空心線圈,或帶有磁芯的線圈,只能通過(guò)較小的電流,承受較低的電壓;而功率電感也有空心線圈的,也有帶磁芯的,主要特點(diǎn)是用粗導(dǎo)線繞制,可承受數(shù)十安,數(shù)百,數(shù)千,甚至于數(shù)萬(wàn)安。
功率電感是分帶磁罩和不帶磁罩兩種,主要由磁芯和銅線組成。 在電路中主要起濾波和振蕩作用。
邁翔科技于1996年設(shè)立,主要從事開(kāi)發(fā)生產(chǎn)貼片功率電感和插件功率電感,并于2003年成為國(guó)內(nèi)*家開(kāi)發(fā)成功一體成型大電流電感器。并申請(qǐng)。此種大電流功率電感,可替代磁環(huán)線圈。
其生產(chǎn)工藝從zui初的軌道油壓式全部改為滑板油壓式。產(chǎn)品合格率已控在92%.
功率電感線徑/圈數(shù)計(jì)算公式
貼片功率電感線徑/圈數(shù)計(jì)算公式
來(lái)源:時(shí)間:2012-09-04 12:27:57
功率電感加載其電感量按下式計(jì)算:線圈公式
阻抗(ohm) = 2 * 3.14159 * F(工作頻率) * 電感量(mH),設(shè)定需用 360ohm 阻抗,因此:
電感量(mH) = 阻抗 (ohm) ÷ (2*3.14159) ÷ F (工作頻率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH
據(jù)此可以算出繞線圈數(shù):
圈數(shù) = [電感量* { ( 18*圈直徑(吋)) + ( 40 * 圈長(zhǎng)(吋))}] ÷ 圈直徑 (吋)
圈數(shù) = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈
空心電感計(jì)算公式
空心電感計(jì)算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H)
D------線圈直徑
N------線圈匝數(shù)
d-----線徑
H----線圈高度
W----線圈寬度
單位分別為毫米和mH。。
空心線圈電感量計(jì)算公式:
l=(0.01*D*N*N)/(L/D+0.44)
線圈電感量 l單位: 微亨
線圈直徑 D單位: cm
線圈匝數(shù) N單位: 匝
線圈長(zhǎng)度 L單位: cm
頻率電感電容計(jì)算公式:
l=25330.3/[(f0*f0)*c]
工作頻率: f0 單位:MHZ 本題f0=125KHZ=0.125
諧振電容: c 單位:PF 本題建義c=500...1000pf 可自行先決定,或由Q
值決定
諧振電感: l 單位: 微亨
1。針對(duì)環(huán)行CORE,有以下公式可利用: (IRON)
L=N2.AL L= 電感值(H)
H-DC=0.4πNI / l N= 線圈匝數(shù)(圈)
AL= 感應(yīng)系數(shù)
H-DC=直流磁化力 I= 通過(guò)電流(A)
l= 磁路長(zhǎng)度(cm)
l及AL值大小,可參照Micrometal對(duì)照表。例如: 以T50-52材,線圈5圈半,其L值為T50-52(表示OD為0.5英吋),經(jīng)查表其AL值約為33nH
L=33.(5.5)2=998.25nH≈1μH
當(dāng)流過(guò)10A電流時(shí),其L值變化可由l=3.74(查表)
H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后)
即可了解L值下降程度(μi%)
2。介紹一個(gè)經(jīng)驗(yàn)公式
L=(k*μ0*μs*N2*S)/l
其中
μ0 為真空磁導(dǎo)率=4π*10(-7)。(10的負(fù)七次方)
μs 為線圈內(nèi)部磁芯的相對(duì)磁導(dǎo)率,空心線圈時(shí)μs=1
N2 為線圈圈數(shù)的平方
S 線圈的截面積,單位為平方米
l 線圈的長(zhǎng)度, 單位為米
k 系數(shù),取決于線圈的半徑(R)與長(zhǎng)度(l)的比值。
計(jì)算出的電感量的單位為亨利。
主要產(chǎn)品:
功率電感 共模電感 貼片磁珠 貼片電感 一體電感 電感器 電感廠家 大電流電感 SMD功率電感 插件電感色環(huán)電感 插件磁珠 藍(lán)牙天線 WIFI天線 深圳電感 東莞電感 深圳磁珠 東莞磁珠
CD31功率電感 CD42功率電感 CD43功率電感 CD51功率電感 CD52功率電感 CD54功率電感 CD73功率電感 CD75功率電感 CD104功率電感 CD105功率電感
CDH2D11功率電感 CDH3B12(3D12)功率電感 CDH3B16(3D16)功率電感 CDH4B18(4D18)功率電感 CDH4B28(4D28)功率電感 CDH5B18(5D18)功率電感 CDH5B28(5D28)功率電感 CBH8B28(8D28)功率電感 CDH8B43(8D43)功率電感
CN1210(3225)功率電感 CN1812(4532)功率電感 B3316功率電感 B3340功率電感 B5022功率電感 BF1608功率電感 BF5022功率電感
CDH62功率電感 CDH74電感 CDH125功率電感 CDH127功率電感
AL0307色環(huán)電感 AL0410色環(huán)電感 AL0510色環(huán)電感
LH0406工形電感 LH0608工形電感 LH0810工形電感 LH0912工形電感 LH1016工形電感
1005(0402)疊層電感高頻電感鐵氧體電感 1608(0603)疊層電感高頻電感鐵氧體電感 2012(0805)疊層電感高頻電感鐵氧體電感 3216(1206)疊層電感鐵氧體電感
1005(0402)疊層磁珠 1608(0603)疊層磁珠 2012(0805)疊層磁珠 3216(1206)疊層磁珠
RH3.5*4.7插件磁珠 RH3.5*6.0插件磁珠 RH3.5*9.0插件磁珠
KQ07VC-R56M一體插件電感 KQ07VC-R68M一體插件電感 KQ07VC-1R0M一體插件電感 KQ07VC-1R5M一體插件電感,
KQ10VC-1R0M一體插件電感 KQ10VC-1R2M一體插件電感 KQ12XP-R39M一體插件電感 KQ10VC-1R2M一體插件電感,
KQ13VC-4R7M一體插件電感 KQ13VC-1R2M一體插件電感
LQM21PN2R2MC0D(TDK GLFR系列、TAIYO YUDEN CKP或LB系列、MURUTA的LQH系列) 片式大電流電感
LFB182G45SG9A293(MBPF18M2450-M11)藍(lán)牙濾波器
DLW21SN371SQ2(MGCC2012M371T)共模電感
Company name: SHENZHEN MOTTO TECHNOLOGY CO.,LTD.
作用
?。?)阻流作用:線圈中的自感電動(dòng)勢(shì)總是與線圈中的電流變化相對(duì)抗。主要可分為高頻阻流線圈及低頻阻流線圈。
(2)調(diào)諧與選頻作用:電感線圈與電容器并聯(lián)可組成LC調(diào)諧電路。即電路的固有振蕩頻率f0與非交流信號(hào)的頻率f相等,則回路的感抗與容抗也相等,于是電磁能量就在電感、電容之間來(lái)回振蕩,這就是LC回路的諧振現(xiàn)象。諧振時(shí)由于電路的感抗與容抗等值又反向,因此回路總電流的感抗zui小,電流量zui大(指f=f0的交流信號(hào)),所以LC諧振電路具有選擇頻率的作用,能將某一頻率f的交流信號(hào)選擇出來(lái)。
功率電感特點(diǎn)
一般電子線路中的電感是空心線圈,或帶有磁芯的線圈,只能通過(guò)較小的電流,承受較低的電壓,而功率電感也有空心線圈的,也有帶磁芯的,主要特點(diǎn)是用粗導(dǎo)線繞制,可承受數(shù)十安,數(shù)百,數(shù)千,甚至于數(shù)萬(wàn)安。
功率電感發(fā)展趨勢(shì)
、相機(jī)、筆記本電腦的磁盤驅(qū)動(dòng)器以及便攜式音頻播放器只是少數(shù)還在使用的傳統(tǒng)電子元件,現(xiàn)在需要更多的是功率電感器。將日益復(fù)雜的電路整合到更加狹小的電路板空間中的巨大的市場(chǎng)壓力導(dǎo)致了性能更佳的、競(jìng)爭(zhēng)力的、更為精巧的終端元件的需求增大。電路板上的大功率轉(zhuǎn)化終端元件的廣泛應(yīng)用也導(dǎo)致了率直流轉(zhuǎn)換器和更精細(xì)電感器需求的增加。為了適應(yīng)這一挑戰(zhàn),元件制造商都花重金在材料與制作上發(fā)展、生產(chǎn)和改善繞線和多層片式電感器,用具有相等或更好的性能的但也更加精細(xì)的設(shè)計(jì)來(lái)迎合市場(chǎng)的需要。[1]
1、精細(xì)功率電感器
在便攜式電子產(chǎn)品的電源供應(yīng)器設(shè)計(jì)當(dāng)中,面臨的zui大挑戰(zhàn)是,既要提高電源供應(yīng)器的工作效率還要減小它的尺寸,也就是說(shuō)要設(shè)計(jì)在電力供應(yīng)設(shè)計(jì)中使用zui小的電感器。解決此難題的辦法之一是,提高DC/DC轉(zhuǎn)換器的開(kāi)關(guān)頻率,這是影響低電感和小尺寸元件的關(guān)鍵。由負(fù)荷波動(dòng)引起的瞬態(tài)響應(yīng)較低的電感值是抵消了更好的。在這種情況下,伴隨著負(fù)載波動(dòng)所引起的更快的瞬態(tài)響應(yīng),低電感值因高頻率而偏移。
但是,有得必有失,提高開(kāi)關(guān)頻率的同時(shí)也增加了開(kāi)關(guān)損耗,這同樣會(huì)導(dǎo)致工作效率的降低。由于其他重要電路設(shè)計(jì)之間相互作用會(huì)影響器件性能這一特點(diǎn),所以僅僅靠增加開(kāi)關(guān)頻率并非易事。
近期,開(kāi)關(guān)頻率一直保持在500kHz左右而電感在4.7~10μH,這些因素包括提供更好的電路設(shè)計(jì),改進(jìn)材料,完善制造技術(shù),都能讓開(kāi)關(guān)頻率保持在1MHz以下。
然而,內(nèi)部電路的進(jìn)一步細(xì)化使得開(kāi)關(guān)頻率已經(jīng)高達(dá)3MHz,但同時(shí)電感值也低于了2.0H。據(jù)推算,6~8MHz的開(kāi)關(guān)頻率以及低于1H的電感值并不常見(jiàn),這就導(dǎo)致了電感器小型化的戲劇性。
2、較高的開(kāi)關(guān)頻率
1-*電感器的發(fā)展趨勢(shì)是小包裝,低電感和更快的開(kāi)關(guān)頻率。例如擁有300kHz開(kāi)關(guān)頻率但面積只有16或36mm2的電感器將被廣泛使用。使用一個(gè)9mm2大小的電感器能將開(kāi)關(guān)頻率提高為1.5MHz,這表明在增加開(kāi)關(guān)頻率的同時(shí)也在相應(yīng)地減小尺寸。未來(lái)要提供更精細(xì)電感器的關(guān)鍵在于部件制造商是否有能力通過(guò)在電路設(shè)計(jì)、材料和制造等方面的不斷進(jìn)步來(lái)降低電感和提高開(kāi)關(guān)頻率。
手機(jī)用電感器技術(shù)的進(jìn)步已經(jīng)在包裝厚度上顯現(xiàn)了出來(lái),例如,從兩三年前2mm到現(xiàn)在的1mm。該技術(shù)的顯著改善讓靠超薄元件支持器件的微型化趨勢(shì)持續(xù)吸引著電子產(chǎn)品消費(fèi)市場(chǎng)。即便如此,單純靠使用較小的電感器也不是一個(gè)完善的解決方案。
3、繞線改善
規(guī)模較小的便攜式設(shè)備需要更緊湊的更率的DC/DC轉(zhuǎn)換器,靠這些補(bǔ)充設(shè)備的強(qiáng)大功能來(lái)zui大限度的完善電池能量。盡管大的元件難以同時(shí)縮減電感尺寸和保持較低阻抗,廠商們依然在通過(guò)更好的設(shè)計(jì),改進(jìn)材料科學(xué),提高制造技術(shù)來(lái)減少電感器尺寸。
功率電感功率耗損的估算
若以(圖五)顯示簡(jiǎn)單電路來(lái)描述電感器的耗損,其中RC代表磁芯耗損,RAC與RDC分別代表交流與直流繞線耗損,RC可以透過(guò)磁芯耗損的估算取得,RAC與RDC則分別為:因表面效應(yīng)與近接效應(yīng)所引起的直流繞線電阻與交流電阻。
?。▓D五) 功率電感的等效耗損模型示意圖
內(nèi)文:若以交換式電源控制器來(lái)架構(gòu)此耗損模型范例,設(shè)定輸入電壓(VIN)為12V,輸出電壓(VOUT)為5V、且輸出電流(IOUT)為2A的降壓式轉(zhuǎn)換器形式運(yùn)作,并采4.7mH的電感,會(huì)帶來(lái)621mA的電感電流漣波,相關(guān)磁芯耗損與磁通密度和頻率的關(guān)系可參考(圖四),其中峰對(duì)峰磁通密度才是重要關(guān)鍵,它會(huì)依循大型遲滯回路中的小型遲滯回路路徑變化,請(qǐng)參考圖二中的內(nèi)回路,峰對(duì)峰磁通密度則可以透過(guò)使用電感器資料規(guī)格書中所提供的方程式取得。另一方面,也可以使用電感器電壓第二乘積除以繞線數(shù)以及繞線內(nèi)磁芯的面積來(lái)取得。
在613高斯(Gauss)下的磁芯耗損大約為470mW,圖五中的RC為電感器中造成磁芯功率耗損的等效并聯(lián)電阻,這個(gè)電阻可以由電感器兩端的RMS電壓、以及磁芯功率耗損計(jì)算中取得。(作者任職于Maxim Integrated Products;本文原載于零組件雜志)
磁芯電感的功率耗損
在交換周期中,因磁芯功率電感磁性能量變化所造成的能源耗損,為導(dǎo)通時(shí)間以磁能方式存入磁芯、以及在關(guān)閉時(shí)由磁芯所提取磁能量間的差異。因此,存入磁芯的總能量為圖二中B-H回路陰影區(qū)域乘上磁芯的體積大小。當(dāng)功率電感電流下降時(shí),磁場(chǎng)強(qiáng)度降低,磁通密度會(huì)循著圖二中的不同路徑(依據(jù)箭頭的方向)變化,其中大部分的能量會(huì)進(jìn)入負(fù)載,儲(chǔ)存能量與發(fā)出能量間的差,就是能量的耗損。磁芯的能量耗損為B-H回路所畫出的區(qū)域乘上磁芯的體積,這個(gè)能量乘以切換頻率就是功率耗損。遲滯耗損依函數(shù)而定,對(duì)大部分的鐵氧體材料來(lái)說(shuō),n大約位在2.5到3的范圍,但這只有在磁芯沒(méi)有成為飽和狀態(tài)、同時(shí)交換頻率落在規(guī)定運(yùn)作范圍內(nèi)才有效。圖二中的陰影區(qū)域顯示,B-H回路的*象限為磁通密度的運(yùn)作區(qū)域,因?yàn)榇蟛糠值纳龎菏脚c降壓式轉(zhuǎn)換器都以正電感電流運(yùn)作。
磁芯功率電感的第二個(gè)耗損來(lái)源為渦流電流。渦流電流是磁芯物質(zhì)因磁通量變化所造成的電流,依據(jù)愣次定律(Lenz’s Law),磁通量的變化會(huì)帶來(lái)一個(gè)產(chǎn)生與初始磁通量變化方向相反的反向電流;這個(gè)稱為渦流的電流,會(huì)流進(jìn)傳導(dǎo)磁芯材料,并造成功率耗損。這也可以由法拉第定律看出。由渦流電流所造成的磁芯功率耗損,正比于磁芯磁通量變化率的平方。由于磁通量變化率直接正比于所加上的電壓,因此渦流電流的功率耗損會(huì)隨著所加上電感電壓的平方增加,并直接與它的波寬相關(guān)。相對(duì)于遲滯區(qū)間耗損,磁芯渦流電流通常會(huì)因磁芯材料的高電阻而低上許多,通常磁芯耗損的資料,會(huì)同時(shí)計(jì)入遲滯區(qū)間以及磁芯渦流電流的耗損。
要測(cè)量磁芯耗損通常相當(dāng)困難,因?yàn)槠浒喈?dāng)復(fù)雜用來(lái)測(cè)量磁通密度的測(cè)試設(shè)置安排、以及對(duì)遲滯回路的估算。迄今許多電感器制造商并沒(méi)有提供這方面的資料,不過(guò)卻有部分可以用來(lái)估算出電感器磁芯耗損的一些特性曲線,這可以由鐵氧體材料制造商、峰對(duì)峰磁通密度與頻率的函數(shù)得出。如果知道電感器磁芯所采用的特定鐵氧體材料以及體積大小,那么就可以利用這些曲線有效地估算出磁芯耗損。
這類曲線,例如(圖三)中的鐵氧體材料,是以加入雙極磁通量變化信號(hào)的正弦波變化電壓的方式取得,當(dāng)以方波型式(包含更高頻諧波)以及單極磁通量變化,運(yùn)作進(jìn)行直流對(duì)直流轉(zhuǎn)換器的磁芯耗損估算時(shí),可以使用基礎(chǔ)頻率以及1/2的峰對(duì)峰磁通密度進(jìn)行,電感器的體積或重量也能夠經(jīng)過(guò)測(cè)量或計(jì)算得出。
功率電感之磁芯的功率耗損
部分電感器制造商有提供磁芯耗損圖、或者是可以用來(lái)取得更加磁芯功率耗損估算的方程式,在部分廠商電感器資料規(guī)格書中,有提供電感器的磁芯耗損方程式。磁芯耗損是由采用常數(shù)(K-factors)的方程式提供,因此可以藉由頻率以及峰對(duì)峰的電感電流漣波函數(shù),來(lái)計(jì)算磁芯耗損。另一方面,廠商也會(huì)以圖形方式,提供許多電感器產(chǎn)品的磁芯耗損。